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A B S T R A C T

The deep sea, characterized by darkness, low temperatures, limited food availability, and extreme pressure, 
harbors a diverse array of life forms. Deep-sea fish, which have evolved unique adaptations to thrive in these 
harsh conditions, play a crucial role in marine ecosystems and biogeochemical cycles. This study investigated the 
trophic ecology and mercury (Hg) dynamics of eleven deep-sea fish species in the East China Sea (ECS) using 
stable isotope analysis (SIA) and total mercury (THg) concentration. Our findings revealed significant overlap in 
trophic niches among the examined species, with notable exceptions indicating instances of competition and 
resource partitioning. Coelorhynchus anatirostris exhibited a relatively broader trophic niche, suggesting a 
generalist feeding strategy, while Chlorophthalmus albatrossis and Neoscopelus microchir displayed more special-
ized niches. We identified four distinct trophic guilds based on δ13C and δ15N values, as well as THg concen-
trations, which underscore the complex interactions of niche differentiation and resource sharing within the 
deep-sea community. The incorporation of Hg as an additional bioindicator provided valuable insights into 
feeding strategies and trophic levels, highlighting its effectiveness in distinguishing ecological niches. Positive 
correlations between THg concentration and total length were observed in certain species, but not across all. At 
the community level, THg concentrations were closely associated with trophic level and habitat. Notably, THg 
concentrations in demersal fish were significantly lower than those in mesopelagic fish, likely attributable to the 
intricate distribution of THg within the ECS, suggesting the complexity of THg variation with depth. Our results 
demonstrate how vertical habitat partitioning and dietary preferences mediate competition and coexistence 
among deep-sea fish species in the ECS. These findings advance our understanding of deep-sea ecosystem trophic 
structure and function while providing insights for conservation and management strategies.

1. Introduction

The deep sea, recognized as Earth’s largest habitat, encompasses 
billions of cubic kilometers. In contrast to shallow marine ecosystems, 
the deep-sea environment is characterized by low light levels, low 
temperatures, and limited food resources, which collectively shape its 
unique ecological attributes (Pethybridge et al., 2010; Drazen and Sut-
ton, 2017). However, the biological diversity and biomass within 
deep-sea ecosystems are substantial (Cook et al., 2013).

Fish represent a crucial component of deep-sea ecosystems, primarily 
comprising mid-trophic level species (e.g., lanternfish, Coelorinchus 
spp.) that feed on zooplankton, small fish, and benthic organisms, as 

well as high-trophic level predators such as deep-sea sharks (Drazen and 
Sutton, 2017; Haddock and Choy, 2024). Based on depth distribution, 
deep-sea fish are classified into mesopelagic, demersal, bathypelagic, 
and abyssopelagic groups (Drazen and Sutton, 2017). Notably, meso-
pelagic fish account for approximately 95% of global fish biomass and 
perform diel vertical migration (DVM) between surface and deep-sea 
layers (Kaartvedt et al., 2012; Irigoien et al., 2014). During the night, 
they ascend to the surface waters to feed on zooplankton, crustaceans, 
and small fish, returning to deeper waters during the day, thereby 
facilitating the transfer of surface-derived nutrients and energy to 
deeper waters (Davison et al., 2013; Bernal et al., 2015; Prellezo et al., 
2024). Demersal fish contribute to energy transfer by consuming 
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vertically migrating organisms, thereby facilitating the transport of 
nutrients, pollutants, and parasites from the upper zone to the 
seafloor—a process crucial for carbon sequestration and biogeochemical 
cycling in deep-sea ecosystems (Drazen and Sutton, 2017; Ñacari et al., 
2023). While historically studied separately, the established migratory 
connectivity between mesopelagic and demersal fish communities ne-
cessitates an integrated research approach to comprehensively under-
stand their collective role in maintaining deep-sea ecosystems functions 
(Drazen and Sutton, 2017).

Inland rivers deliver essential nutrients to the East China Sea (ECS), 
one of the largest marginal seas in the western Pacific Ocean, supporting 
a diverse array of fishery resources (Chen et al., 2016; Wang and Zhang, 
2023). Numerous studies have documented a significant presence of 
deep-sea fish species, including Diaphus spp., Myctophum spp., and 
Coelorinchus spp., within the ECS (Okazaki and Nakata, 2007; Mei et al., 
2019; Xu et al., 2019). Research has investigated various biological as-
pects of these species, such as biomass estimation (Davison et al., 2015), 
age and growth (Zhang and Guo, 2024), diet composition (Tanaka et al., 
2013), and reproductive strategies (Sassa et al., 2016). However, the 
mechanisms by which deep-sea fishes partition resources to minimize 
competition remain understudied. Investigating niche partitioning is 
crucial for understanding the processes that facilitate the coexistence of 
deep-sea species. This knowledge is fundamental for advancing our 
understanding of population dynamics, resource use, and energy 
transfer within the deep-sea ecosystems. Additionally, it provides a 
foundation for developing fisheries management strategies that promote 
the sustainable exploitation of these valuable resources (Brandl et al., 
2020).

Stable isotope analysis (SIA) and mercury (Hg) serve as valuable 
tools for understanding marine food web structure (Boecklen, 2011; Le 
Croizier et al., 2020). The ratio of 13C/12C (δ13C) commonly distin-
guishes and quantifies the relative contributions of various primary 
producers (e.g., pelagic vs. benthic) (Cherel and Hobson, 2007), while 
the ratio of 15N/14N (δ15N) is typically enriched in consumers relative to 
their diet, providing an estimate of trophic position (Caut et al., 2009). 
Released from both natural and anthropogenic sources, Hg represents a 
significant global pollutant that undergoes microbial conversion to 
methylmercury (MeHg) in marine environments (Obrist et al., 2018). 
MeHg’s high affinity for adipose tissue and slow metabolic degradation 
leads to bioaccumulation and biomagnification through food webs 
(Gworek et al., 2016; Barbosa et al., 2022). Since dietary intake repre-
sents the primary pathway for Hg accumulation in marine organisms, Hg 
concentrations reflect feeding behaviors and serve as a complementary 
trophic tracer across diverse taxa (Hall et al., 1997), including cepha-
lopods, fish, seabirds, and marine mammals (Bustamante et al., 2006; 
Paula et al., 2013; Peterson et al., 2015; Le Croizier et al., 2020; Bezerra 
et al., 2021; Thorne et al., 2021).

This study aims to investigate the trophic interactions among eleven 
deep-sea fish species in the ECS using SIA combined with Hg as a 
complementary tracer. We hypothesized that feeding ecology drives 
trophic partitioning among species and analyzed trophic positions and 
niche overlaps to understand resource competition and coexistence 
mechanisms. We quantified total mercury (THg) concentrations to 
examine how biotic and abiotic factors (species, trophic level, ontogeny, 
and habitat) influence Hg accumulation. Additionally, we assessed the 
utility of Hg as a complementary tool in the analysis of trophic guilds 
(TGs), evaluating how Hg concentrations reflect feeding strategies and 
dynamic niche shifts within these groups. By addressing these objec-
tives, this study seeks to enhance our understanding of the mechanisms 
of Hg accumulation, the trophic structure, and the potential ecological 
impacts on deep-sea ecosystems in the ECS.

2. Materials and methods

2.1. Sample collection and preparation

Fish samples were collected between February and April 2023 by the 
commercial trawler "Zheling Fishery 74016″ in the sea area delineated by 
the coordinates 29◦50.541′-30◦36.488′N, 127◦41.610′-127◦57.927′E 
(Fig. 1). In the laboratory, all the samples were classified and identified 
using DNA barcoding technology, then stored at − 20 ◦C for further 
analysis. The total length (TL ± 0.1 cm) and weight (±0.01 g) of each 
sample were measured. Fish muscles were rinsed with ultra-pure water 
and dried in a freeze dryer (Christ Alpha 1–4) at − 55 ◦C for 36 h; dried 
tissues were then ground into a powder using a freeze mixer ball mill 
(Mixer mill MM440).

Eleven species were selected for this analysis: Astronesthes chrys-
ophekadion, Chlorophthalmus albatrossis, Coelorhynchus anatirostris, Coe-
lorhynchus kamoharai, Congriscus megastomus, Diaphus watasei, Dicrolene 
tristis, Nansenia ardesiaca, Neoscopelus microchir, Polymetme elongate, 
Synagrops japonicus. The biological data are presented in Table 1.

2.2. Stable isotopes analysis

SIA was carried out in the Key Laboratory of the Ministry of Edu-
cation for Sustainable Exploitation of Pelagic Fishery Resources, 
Shanghai Ocean University.

Approximately 1.5 mg of defatted powder was weighed and encap-
sulated in a tin cup and subsequently was fed into a stable isotope mass 
spectrometer (IsoPrime 100, UK) and elemental analyser (Vario 
ISOTOPE cube, Germany) for stable isotope determination of carbon and 
nitrogen. The δ13C and δ15N values were calculated using the following 
equations: 

δX = (Rsample/Rstandard-1) × 1000 (‰)                                            (1)

where X is 13C or 15N; Rsample and Rstandard are the isotope ratios of the 
sample and the standard sample, respectively.

2.3. Total mercury (THg) analysis

The THg concentrations in all samples were determined using ther-
mal decomposition (combustion), amalgamation, and atomic absorption 
spectroscopy with a calibrated DMA-80 Direct Hg Analyser (Milestone, 
Italy). Approximately 0.02 g of dried and homogenized powder was 
loaded into the DMA-80 and combusted at 650 ◦C in an aerobic envi-
ronment. The procedure involved drying for 100 s, decomposition for 
150 s, and a 10 s waiting period. Quality control procedures included 
analysis of laboratory method blanks, duplicate tissue samples, and 
certified reference materials (DORM-4) were analyzed. The precision of 
duplicate samples averaged ±6.56%, and the percentage recovery for 
the certified reference materials ranged from 95% to 108%.

2.4. Data analysis

All the results were expressed as mean ± standard deviation. Since 
the samples did not satisfy normality and homogeneity of variance, the 
Kruskal-Wallis test was used to test the variability of δ13C, δ15N values, 
and THg concentrations among species. We used two-dimensional (2D) 
(δ13C and δ15N) ellipse areas and three-dimensional (3D) (δ13C, δ15N, 
and THg) ellipsoids, encompassing 40% of the data (SEA and SEV) 
calculated using the SIBER package (Jackson et al., 2011) and Markov 
Chain Monte Carlo (MCMC), respectively.

We showed isotopic overlap as a percentage of the 2D ellipses (SEA) 
or 3D ellipsoids (SEV) so that we could compare the results from the two 
models. Following Parzanini et al. (2017), a hierarchical cluster analysis 
(Ward’s linkage, Euclidean distance) was performed on the mean δ13C, 
δ15N values, and THg concentrations for each species to identify 
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potential functional groups or trophic niches among the species studied.
To investigate the relationship between THg and fish standard 

length, log10-transformed THg concentrations (lgTHg) were examined 
against fish TL using the Pearson correlation test. The linear relationship 
between lgTHg and the δ15N values was used to assess the bio-
magnification of Hg at various trophic levels according to Nfon et al. 
(2009). The trophic magnification factor (TMF) was calculated using the 
following formula: 

TMF = 10b                                                                                    (2)

where b is the slope of the linear relationship between the lgTHg and 
δ15N values, also known as the trophic magnification slope (TMS). TMF 
represents the increase in Hg concentration at each trophic position 
(TP). The TP calculation formula is as follows: 

TPconsumer = (δ15Nconsumer - δ15Nbaseline)/Δ15N+λ                             (3)

where TPconsumer is the trophic level of the consumer and δ15Nconsumer is 
its δ15N value. δ15Nbaseline is the δ15N value of the baseline organism, λ is 
the trophic level of the baseline organism and Δ15N is the trophic 
discrimination factor (TDF). According to Zou et al. (2022), δ15Nbaseline 
= 7.73‰, λ = 2, Δ15N = 3.4‰. Fish were divided into three groups based 
on TP: low trophic position group (LP, ≤3), medium trophic position 
group (MP, 3–3.5), and high trophic position group (HP, >3.5).

Generalized linear models (GLMs) were applied to assess the effects 

of total length (TL), habitat, δ13C, and δ15N values on THg concentra-
tions in the muscle tissues of deep-sea fishes. Using species distribution 
data from FishBase and relevant literature, the eleven species studied 
were classified as either mesopelagic or demersal fish (Table 1; Froese 
and Pauly, 2000; Staby and Salvanes, 2019). No significant relationship 
was detected between δ13C or δ15N values and TL within or across 
species. GLMs were constructed with the LME4 package, using THg 
concentration as the response variable. Residual diagnostic plots indi-
cated the appropriateness of a Gaussian distribution and an identity link 
function for the models. The Akaike Information Criterion (AIC) was 
employed to identify the model with the best fit (lowest AIC score), and 
the variance inflation factor (VIF) was used to check for multi-
collinearity among the predictor variables.

3. Results

3.1. δ13C, δ15N values and THg concentrations across the deep-sea fish 
community of the ECS

Muscle tissue δ13C values differed significantly among fish species 
(Kruskal-Wallis, P < 0.01), ranging from − 20.47 ± 0.86‰ in N. arde-
siaca to − 17.81 ± 1.99‰ in P. elongata (Table 1, Fig. S1). Interspecific 
variation was also observed in δ15N signatures (Kruskal-Wallis, P <
0.01), with C. anatirostris showing the highest enrichment (13.05 ±

Fig. 1. Map of the study area in the ECS.

Table 1 
Sampling size (n), habitat, mean total length (TL, cm), δ13C, δ15N values (‰), trophic position (TP) and THg concentrations (mg/kg, DW) of eleven deep-sea fish species 
in the ECS.

Species name n Habitat TL (cm) δ13C (‰) δ15N (‰) TP THg (mg/kg, DW)

Astronesthes chrysophekadion 21 mesopelagic 16.0 ± 1.6 − 19.82 ± 1.11 10.90 ± 0.42 2.93 0.56 ± 0.24
Chlorophthalmus albatrossis 28 demersal 10.9 ± 1.4 − 19.33 ± 0.24 9.73 ± 0.31 2.59 0.14 ± 0.02
Coelorhynchus anatirostris 8 demersal 19.6 ± 2.7 − 17.96 ± 0.93 13.05 ± 0.86 3.56 0.78 ± 0.32
Coelorhynchus kamoharai 21 demersal 18.6 ± 3.3 − 18.42 ± 0.35 11.43 ± 0.40 3.09 0.24 ± 0.15
Congriscus megastomus 16 demersal 22.2 ± 4.6 − 19.80 ± 1.35 11.03 ± 0.80 2.97 0.35 ± 0.20
Diaphus watasei 31 mesopelagic 12.4 ± 2.1 − 19.53 ± 0.90 11.17 ± 0.45 3.01 0.59 ± 0.22
Dicrolene tristis 7 demersal 15.7 ± 2.9 − 18.69 ± 0.40 11.68 ± 0.37 3.16 0.42 ± 0.18
Nansenia ardesiaca 5 mesopelagic 12.2 ± 1.0 − 20.47 ± 0.86 10.07 ± 0.71 2.69 0.15 ± 0.03
Neoscopelus microchir 9 mesopelagic 12.0 ± 3.1 − 19.52 ± 0.21 10.64 ± 0.44 2.86 0.35 ± 0.14
Polymetme elongata 23 mesopelagic 15.2 ± 1.0 − 17.81 ± 1.99 11.12 ± 0.36 3.00 0.19 ± 0.09
Synagrops japonicus 24 demersal 14.2 ± 1.8 − 18.56 ± 0.37 10.54 ± 0.60 2.83 0.16 ± 0.06
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0.86‰) and C. albatrossis displaying the lowest values (9.73 ± 0.31‰) 
among all deep-sea species analyzed (Table 1, Fig. S2).

Muscle tissue THg concentrations varied significantly among the 
eleven studied species (Kruskal-Wallis, P < 0.01, Fig. S3). C. anatirostris 
displayed the highest THg levels (0.78 mg/kg DW), followed by 
D. watasei (0.59 mg/kg DW) and A. chrysophekadion (0.56 mg/kg DW), 
while C. albatrossis and N. ardesiaca showed the lowest concentrations 
(0.14 and 0.15 mg/kg DW, respectively) (Table 1). When converted to 
wet weight (WW), THg concentrations ranged from 0.01 to 0.34 mg/kg 
WW, remaining below the Food and Agriculture Organization (FAO) 
threshold (0.5 mg/kg WW).

3.2. Variation in niches of species and trophic guilds (TGs)

The isotopic niches of most species clustered closely along the δ15N 
and δ13C axes, with substantial niche overlap, except for C. anatirostris, 
which occupied a distinct position along the δ15N axis (Fig. 2). Standard 
ellipse areas (SEAc) varied considerably among species (0.20–3.63‰2), 
with C. megastomus, C. anatirostris, and N. ardesiaca showing the most 
isotopic spaces, while C. albatrossis and N. microchir exhibited the most 
restricted isotopic spaces (Table S1, Fig. 2). Maximum niche overlap was 
observed between C. megastomus and three species: A. chrysophekadion, 
D. watasei (both 100%), and N. microchir (98.33%). Conversely, 
C. albatrossis and C. anatirostris maintained distinct isotopic niches with 
minimal overlap with other species.

Hierarchical cluster analysis identified four distinct TGs among the 
eleven species (Fig. S4). Based on δ13C values and literature evidence, 
TG 1 and TG 2 were characterized as demersal, while TG 3 and TG 4 
were classified as mesopelagic. Initial 2D ecological niche analysis 
revealed substantial overlap between TG 2 and TG 3 (Fig. 3, Table S2). 
The incorporation of THg as a third dimension significantly modified 
intergroup relationships (Fig. 4, Table S3), notably reducing the TG 3- 
TG 2 overlap from 55.62% to 13.12%, while other intergroup overlaps 
showed minimal increases (<5%).

3.3. Drivers of THg variability: trophic level, size and habitat

The GLMs analysis of the entire food web showed that δ15N values 
and habitat had the most significant effect on THg concentration, while 
δ13C values and TL had no significant effect (Table S4 and Fig. S5). A 
significant relation emerged between lgTHg and δ15N values across all 
species (r = 0.58, P < 0.01), described by lgTHg = 0.20(δ15N) - 2.69, 
where TMS = 0.20 and TMF = 1.58 (Fig. 5). Low-trophic-level species 
C. albatrossis and N. ardesiaca (TP = 2.59 and 2.69, respectively) had the 
lowest THg concentration (0.14 and 0.15 mg/kg), while the only high- 
trophic-level species, C. anatirostris (TP = 3.56), had the highest THg 

concentration. However, some higher trophic level species 
(C. kamoharai and P. elongata) displayed unexpectedly low THg con-
centrations. The GLMs results also showed that mesopelagic species 
consistently had higher THg levels than demersal species. This was true 
even when species from the different taxonomic groups were at the same 
trophic level, such as D. watasei vs. C. kamoharai and A. chrysophekadion 
vs. C. megastomus.

There were strong positive correlations (P < 0.05) between THg 
levels and body size in seven species (Fig. 6). Among smaller species, 
THg concentrations varied markedly: C. albatrossis (mean size 10.9 cm) 
contained 0.14 mg/kg DW, while D. watasei (mean size 12.4 cm) showed 
substantially higher levels at 0.59 mg/kg DW. Larger species such as 
C. anatirostris and C. megastomus exhibited elevated THg concentrations.

4. Discussion

4.1. Resource partitioning among the eleven deep-sea fish species

An organism’s trophic niche width reflects the diversity of resources 
it exploits for nutrition (Bearhop et al., 2004). Tissue isotope ratios 
provide integrated information about both trophic position and spatial Fig. 2. Stable isotopic niches of eleven deep-sea fish species.

Fig. 3. 2D trophic niche plot for the four trophic guilds (TGs) based on hier-
archical cluster analysis. TG 1: C. anatirostris; TG 2: S. japonicus, C. kamoharai, 
D. tristis, P. elongata; TG 3: A. chrysophekadion, C. megastomus, D. watasei, 
N. microchir; TG 4: C. albatrossis, N. ardesiaca.

Fig. 4. 3D trophic niche plot for the four trophic guilds (TGs).
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distribution, with δ13C values serving as crucial indicators of carbon 
sources and changes in individual foraging habitats (Cherel and Hobson, 
2007). The broad range of δ13C values observed in P. elongata suggests 
ontogenetic habitat shifts to deeper water layers (Takami, 2022), similar 
to patterns documented in mesopelagic communities of the southern 
Kerguelen Plateau (Woods et al., 2020). The large isotopic niche dis-
played by C. anatirostris in a two-dimensional context indicates the 
exploitation of diverse food resources. This finding supports earlier 
stomach content analyses that identified this species as a generalist, 
consuming both epibenthic and endobenthic organisms (Ozawa and 
Zinno, 1990; Carrassón and Matallanas, 2002). In contrast, C. albatrossis, 
D. tristis, and N. microchir exhibited narrower isotopic niches, suggesting 
more specialized feeding strategies focused on a limited prey range 
(Ozawa and Zinno, 1990).

Trophic niche overlap refers to the degree of similarity in resource 
utilization and the potential for competitive interactions among species, 
whereas trophic niche differentiation pertains to the dietary differences 
and habitat segregation observed between species (Costa-Pereira et al., 
2019). Stable isotope ratios found in the tissues of organisms, which 
reflect the cumulative effects of all trophic pathways leading to that 
individual, are frequently employed to characterize the trophic niche 
(Layman et al., 2007). C. anatirostris (high trophic position) and 
C. albatrossis (low trophic position) occupied distinct isotopic niches, 
reflecting minimal competition for food resources or habitat use be-
tween the two species. The significant niche overlap (64.55%) observed 
in the study area between D. watasei and A. chrysophekadion was 
attributed to their shared carnivorous diet, which primarily consists of 
small lanternfish and krill (Sutton and Hopkins, 1996), as reported by 
Liao et al. (2006) in the coastal waters of Taiwan.

Trophic guilds classify species based on their shared food resources 
and feeding strategies (Root, 1967), helping identify functional roles 
within ecosystems through analysis of feeding relationships and 
resource utilization patterns (Segura-Trujillo et al., 2016). In our 2D 
analysis, while TG 1 and TG 2 showed similar δ13C values indicating 
shared habitats, their δ15N differences likely reflect size-dependent prey 
selection (Fig. 3). Within TG 1, the larger-bodied C. anatirostris targets 
higher trophic level prey, expanding its niche and reducing interspecific 
competition (Woods et al., 2020). P. elongata’s classification in TG 2 
reflects its ontogenetic migration to deeper waters, while C. megastomus’ 
placement in TG 3 aligns with its predominantly mesopelagic fish diet 
(Ozawa and Zinno, 1990; Takami, 2022). The distinct foraging patterns 
between TG 2 and TG 3 manifest in their isotopic signatures. TG 2’s 
elevated δ13C values indicate deeper-water foraging, supported by 

substantial benthic prey consumption (Ozawa and Zinno, 1990). TG 3, 
which primarily feeds on small mesopelagic fishes and crustaceans, 
functions as a link between deep-sea and pelagic food webs, facilitating 
energy transfer and trophic cascades (Liao et al., 2006; Zhang and Guo, 
2024). TG 4’s specialization in small crustaceans contributes to 
zooplankton population regulation and pelagic food web stability 
(Ozawa and Zinno, 1990; Kudo et al., 1970).

4.2. Hg as a complementary dietary tracer

Our analysis revealed positive linear correlations between muscle 
tissue THg concentrations and body size in most species examined, 
aligning with previous findings (Storelli et al., 2006; Sackett et al., 2013; 
Seco et al., 2020). This pattern reflects Hg bioaccumulation through 
dietary exposure in mid-trophic level fish (Phillips and Buhler, 1978), as 
larger individuals typically consume bigger prey with higher Hg content 
(Chouvelon et al., 2014) and exhibit reduced Hg excretion rates (Trudel 
and Rasmussen, 1997). However, four species (C. albatrossis, 
C. megastomus, C. kamoharai, and N. ardesiaca) showed no significant 
length-THg correlation (Fig. 6). Sakaji et al. (2006) reported that 
Chlorophthalmus spp. enter the reproductive phase when their TL rea-
ches between 75 and 115 mm. During ovulation, female fish may 
metabolize a portion of THg through the spawning process (Khadra 
et al., 2019). Additional factors affecting THg-size relationships include 
dietary stability, growth dilution effects, and Hg elimination rates 
(Simoneau et al., 2005; Ward et al., 2010; Dang and Wang, 2012). The 
limited data availability for deep-sea species constrains our ability to 
fully explain these patterns, highlighting critical knowledge gaps and 
the need for more comprehensive research into Hg bioaccumulation 
mechanisms.

Habitat and depth distribution are key ecological factors that influ-
ence THg concentrations in fish (Monteiro et al., 1996). It is widely 
accepted that THg concentrations in fish tend to increase with depth; 
previous studies have generally reported slightly elevated THg levels in 
demersal fish compared to mesopelagic fish (Romero-Romero et al., 
2022). In contrast, our findings indicate that mesopelagic fish exhibit 
significantly higher THg concentrations than demersal fish, even among 
species occupying similar trophic levels (Table 1; Fig. S5). For example, 
substantial differences in THg concentrations were noted between 
D. watasei and C. kamoharai, as well as between A. chrysophekadion and 
C. megastomus. This unexpected pattern may be attributed to the com-
plex spatial distribution of THg in seawater (Cossa et al., 2011). The ECS, 
characterized as a dynamic and variable marine system, displays highly 
heterogeneous THg distributions influenced by the interplay of multiple 
water masses, including the discharge from the Yangtze River and the 
Kuroshio Current (Liu et al., 2020). This heterogeneity complicates the 
straightforward depth-dependent increase in THg concentrations, as 
shallower waters are observed to have higher THg levels (Liu et al., 
2020). Moreover, mesopelagic fish tend to exhibit higher feeding rates 
than demersal fish, likely due to their increased energy requirements to 
sustain a broader range of activities (Drazen and Sutton, 2017; Andresen 
et al., 2024). Additionally, their extensive movements may lead to 
exposure to areas with elevated THg concentrations, thereby enhancing 
THg bioaccumulation. In conclusion, the relatively high THg concen-
trations observed in mesopelagic fish are likely the result of a combi-
nation of environmental factors and ecological behaviors.

The lgTHg and δ15N values of the eleven species examined in this 
study demonstrated a positive linear relationship (Fig. 5), consistent 
with the findings of previous research on Hg biomagnification within the 
ECS and other marine food webs (Matias et al., 2022; Zou et al., 2022). 
This positive correlation indicates that species at higher trophic levels 
tend to accumulate greater amounts of Hg, as summarized by McMeans 
et al. (2010) and Kiszka et al. (2015). Consequently, THg concentrations 
in organisms serve as a reliable indicator of their trophic level. This 
finding highlights the significance of Hg concentrations in evaluating 
the impact on deep-sea predators and the overall health of the ecosystem 

Fig. 5. Regression relationship between lgTHg and δ15N values, r is the Pearson 
correlation coefficient with significance determined by values of P < 0.05. The 
blue area delineates the 95% confidence interval.
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(Drazen and Sutton, 2017; Kozak et al., 2021).
Notably, among the species studied, C. kamoharai and P. elongata, 

despite their higher trophic level positions, exhibited lower THg con-
centrations. A similar trend has been observed in pelagic sharks, where 
the THg concentration in the smooth hammerhead shark (Sphyrna zyg-
aena) is lower than that in the blue shark (Prionace glauca), which oc-
cupies a lower trophic level (Besnard et al., 2021). The δ15N values not 
only reflect trophic levels but also indicate the δ15N baseline of foraging 

areas (Lorrain et al., 2015). In oxygen-depleted deep waters, bacterial 
denitrification induces substantial δ15N fractionation, enriching both 
residual nitrate and organic matter. Consequently, prey organisms in 
these depths exhibit elevated δ15N signatures compared to those in the 
euphotic zone (Graham et al., 2010). This mechanism may explain the 
unexpectedly low THg concentrations in high-trophic demersal species 
through the combined effects of elevated δ15N baselines and reduced 
environmental Hg availability in their habitat.

Fig. 6. Relationship between TL and lgTHg concentration in eleven species of deep-sea fish, r is the Pearson correlation coefficient with significance determined by 
values of P < 0.05. The blue area delineates the 95% confidence interval.
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Mercury (Hg) uptake in fish occurs primarily through dietary con-
sumption, establishing its utility as a dietary tracer in aquatic ecosys-
tems (Seco et al., 2020; Li et al., 2022). This element serves as an 
effective indicator of long-term feeding patterns and bioaccumulation 
processes, revealing nuanced differences in species-specific foraging 
strategies (Dorea et al., 2006; Le Croizier et al., 2020). The incorporation 
of Hg data revealed a significant modification in niche overlap between 
TG 3 and TG 2, manifesting as a 42.5% reduction. This pattern likely 
reflects distinct habitat preferences and prey selection between the 
groups, characterized by differential Hg exposure. TG 2 predominantly 
targets prey with lower Hg concentrations in benthic environments, 
while TG 3 focuses on species with elevated Hg levels inhabiting 
epipelagic to mesopelagic zones. Conversely, the increased proportion 
between TG 1 and TG 3 suggests consumption of prey with comparable 
Hg levels.

Many demersal fish species exhibit opportunistic predation strategies 
(Dolbeth et al., 2008). For instance, C. anatirostris not only preys on 
benthic organisms but also exploits food resources from shallower 
layers, such as Euphausiacea, thereby enhancing the ecological niche 
overlap between the two groups. This phenomenon indicates that Hg 
incorporation reflects the ecological coupling between mesopelagic and 
demersal species. Consequently, the integration of Hg as a comple-
mentary measure alongside stable carbon and nitrogen isotopes in tro-
phic niche analyses provides valuable insights into species-specific 
dietary strategies, habitat utilization, and food web dynamics, thereby 
enriching our understanding of ecological interactions (Fragoso et al., 
2024).

5. Conclusion

This study highlights the importance of trophic guilds variations 
within the deep-sea ecosystem, reflecting distinct habitat preferences 
and dietary choices among species. It underscores the role of vertical 
niche differentiation and dietary partitioning in promoting species 
coexistence and ecosystem stability. Additionally, mercury (Hg) as a 
complementary dietary tracer revealed significant changes in trophic 
niche overlaps, enhancing our understanding of ecological interactions 
between mesopelagic and demersal groups. However, the species- 
specific patterns of Hg accumulation suggest the need for future 
research to investigate regional environmental factors, ontogenetic 
habitat shifts, feeding habits, and complex biogeochemical processes.
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